Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurotrauma ; 24(1): 28-42, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17263668

RESUMO

The clinical manifestations of inflicted traumatic brain injury in infancy most commonly result from intracranial hemorrhage, axonal stretch and disruption, and cerebral edema. Often hypoxia ischemia is superimposed, leading to early forebrain and later thalamic neurodegeneration. Such acute and delayed cellular injury activates microglia in the CNS. Although activated microglia provide important benefits in response to injury, microglial release of reactive oxygen species can be harmful to axotomized neurons. We have previously shown that the antioxidants metallothionein I and II (MT I & II) promote geniculocortical neuronal survival after visual cortex lesioning. The purpose of this investigation was to determine the influence of MT I & II on the density and rate of thalamic microglial activation and accumulation following in vivo axotomy. We ablated the visual cortex of 10-day-old and adult MT I & II knock out (MT(-/-)) and wild-type mice and then determined the density of microglia in the dorsal lateral geniculate nucleus (dLGN) over time. Compared to the wild-type strain, microglial activation occurred earlier in both young and adult MT(-/-) mice. Similarly, microglial density was significantly greater in young MT(-/-) mice 30, 36, and 48 hours after injury, and 3, 4, and 5 days after injury in MT(-/-) adults. In both younger and older mice, time and MT I & II deficiency each contributed significantly to greater microglial density. Only in younger mice did MT I & II expression significantly slow the rate (density x time) of microglial accumulation. These results suggest that augmentation of MT I & II expression may provide therapeutic benefits to infants with inflicted brain injury.


Assuntos
Axotomia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Metalotioneína/genética , Metalotioneína/fisiologia , Microglia/metabolismo , Microglia/patologia , Tálamo/metabolismo , Tálamo/patologia , Envelhecimento/fisiologia , Animais , Contagem de Células , Morte Celular , Imuno-Histoquímica , Metalotioneína/biossíntese , Camundongos , Camundongos Knockout , Microglia/ultraestrutura , Degeneração Neural/patologia , Neurônios/fisiologia , Córtex Visual/patologia
2.
J Neurosci Res ; 78(3): 303-14, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15389833

RESUMO

Both the immediate insult and delayed apoptosis contribute to functional deficits after brain injury. Secondary, delayed apoptotic death is more rapid in immature than in adult CNS neurons, suggesting the presence of age-dependent protective factors. To understand the molecular pathobiology of secondary injury in the context of brain development, we identified changes in expression of oxidative stress response genes during postnatal development and target deprivation-induced neurodegeneration. The antioxidants metallothionein I and II (MT I/II) were increased markedly in the thalamus of adult C57BL/6 mice compared to mice <15 days old. Target deprivation generates reactive oxygen species that mediate neuronal apoptosis in the central nervous system; thus the more rapid apoptosis observed in the immature brain might be due to lower levels of MT I/II. We tested this hypothesis by documenting neuronal loss after target-deprivation injury. MT I/II-deficient adult mice experienced greater thalamic neuron loss at 96 hr after cortical injury compared to that in controls (80 +/- 2% vs. 57 +/- 4%, P < 0.01), but not greater overall neuronal loss (84 +/- 4% vs. 79 +/- 3%, MT I/II-deficient vs. controls). Ten-day-old MT I/II-deficient mice, however, experienced both faster onset of secondary neuronal death (30 vs. 48 hr) and greater overall neuronal loss (88 +/- 2% vs. 69 +/- 4%, P = 0.02). MT I/II are thus inhibitors of age-dependent secondary brain injury, and the low levels of MT I/II in immature brains explains, in part, the enhanced susceptibility of the young brain to neuronal loss after injury. These findings have implications for the development of age-specific therapeutic strategies to enhance recovery after brain injury.


Assuntos
Apoptose , Lesões Encefálicas/metabolismo , Metalotioneína/fisiologia , Degeneração Neural/patologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Lesões Encefálicas/patologia , Contagem de Células/métodos , Estado de Descerebração/complicações , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/métodos , Lateralidade Funcional/fisiologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Corpos Geniculados/crescimento & desenvolvimento , Corpos Geniculados/metabolismo , Corpos Geniculados/patologia , Corpos Geniculados/fisiopatologia , Immunoblotting/métodos , Masculino , Metalotioneína/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , RNA Mensageiro/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Estatísticas não Paramétricas , Tálamo/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...